Inhaltsstoffe
*Aufgrund zeitlicher Verzögerungen und Tippfehlern kann nicht garantiert werden, dass die auf dieser Seite publizierten Zutaten bzw. Nährwerte mit den Informationen auf der Etikette des Produktes übereinstimmen. Relevant sind nur die Angaben auf der Etikette des Produktes. Im Fall von Unsicherheiten können Sie uns gerne kontaktieren.
CO2 Fußabdruck
Nicht Verfügbar
Keine Labels & Gütesiegel vorhanden
Produktinformationen
Weitere Informationen
Kategorie
Weitere NahrungsergänzungenMenge / Größe
Hersteller / Vertrieb
Strichcode-Nummer
Herkunft
Marke
Erfasst von User
Letzte Änderung von User
anzeigen
Angaben verbessern
Produkt bearbeitenLebens & Ernährungsweise
Zutaten
Inhaltsstoffe
*Aufgrund zeitlicher Verzögerungen und Tippfehlern kann nicht garantiert werden, dass die auf dieser Seite publizierten Zutaten bzw. Nährwerte mit den Informationen auf der Etikette des Produktes übereinstimmen. Relevant sind nur die Angaben auf der Etikette des Produktes. Im Fall von Unsicherheiten können Sie uns gerne kontaktieren.
Nährwerte - Prozent der empfohlenen Tagesdosis
| Kalorien |
|
18% |
| Eiweiß |
|
1% |
| Fett |
|
0% |
| Kohlenhydrate |
|
31% |
| Zucker |
|
150% |
Inhaltsstoffe
Weitere Namen
E950, Acesulfam
Gruppe
Geschmacksverstärker, Süßstoff
Erläuterung
Die weißen Acesulfam-K Kristalle sind von intensiv süßem Geschmack, der auch beim Kochen und Backen stabil bleibt. Acesulfam-K ist etwa 200 mal süßer als Haushaltszucker (Saccharose), wird aber vom Körper nicht verstoffwechselt, sondern unverändert ausgeschieden. In der Lebensmittelindustrie wird Acesulfam-K vor allem in zuckerreduzierten Lebensmitteln einzeln oder in Kombination mit Aspartam (E 951) bzw. anderen Süßstoffen eingesetzt. Er ist zudem als Tafelsüße im Handel. In zuckerhaltigen Kaugummis wird Acesulfam-K darüber hinaus als Geschmacksverstärker eingesetzt.
Herstellung
Acesulfam-K wird durch chemische Reaktion aus Abkömmlingen der Acetessigsäure gewonnen.
Problem
Widersprüchliche Studienergebnisse zur Förderung von Übergewicht durch Süßstoffe: einige belegen appetitanregende Wirkung, die meisten stützen diese Ergebnisse nicht. Weitere unabhängige Forschung ist erforderlich.
Acesulfam-K wird vom Körper nicht verstoffwechselt, sondern unverändert ausgeschieden. In vergleichsweise hoher Konzentration im Abwasser nachweisbar, da es kaum entfernt werden kann.
Vom Verzehr größerer Mengen ist abzuraten.
Zusatzinformationen
Bei der Herstellung ist der Einsatz gentechnisch veränderter Organismen möglich.
Dieser Zusatzstoff ist gemäß der EG-Öko-Verordnung für die Herstellung von Bio-Lebensmitteln erlaubt.
Nanotechnische Herstellung möglich - Risikopotential wenig erforscht.
Datenquellen
Die Verbraucher Initiative e.V., www.zusatzstoffe-online.de (2024)
Weitere Namen
E951
Gruppe
Geschmacksverstärker, Süßstoff
Erläuterung
Aspartam besteht aus den beiden Eiweißbausteinen (Aminosäuren) Asparaginsäure und Phenylalanin. Die weißen Kristalle schmecken etwa 200-mal süßer als Haushaltszucker (Saccharose), verlieren ihre Süßkraft jedoch bei großer Hitze und in Gegenwart von Säuren. Aspartam ist daher nicht zum Kochen und Backen geeignet. Im menschlichen Organismus wird Aspartam in seine Bestandteile aufgespalten und verwertet. Daher liefert der Stoff rechnerisch wie jedes Eiweiß Energie (4 kcal/g). Da Aspartam jedoch wegen seiner starken Süßkraft nur in sehr geringen Mengen eingesetzt wird, leistet es keinen nennenswerten Beitrag zur Gesamtenergieversorgung.
In der Lebensmittelindustrie wird der Süßstoff vor allem in zuckerreduzierten Lebensmitteln einzeln oder in Kombination mit anderen Süßstoffen eingesetzt. Er ist zudem als Tafelsüße im Handel. In zuckerhaltigen Kaugummis wird Aspartam, das eine verstärkende Wirkung auf Zitrus- und Fruchtaromen hat, als Geschmacksverstärker eingesetzt.
Herstellung
Aspartam wird durch chemische Reaktion aus Asparaginsäure, Phenylalanin und Methanol hergestellt. Bei der Herstellung ist der Einsatz gentechnisch veränderter Organismen möglich.
Problem
Die duldbare tägliche Aufnahmemenge beträgt 40mg pro kg Körpergewicht. Menschen, die unter der seltenen Krankheit Phenylketonurie leiden, dürfen das im Aspartam enthaltene Phenylanalin nur im begrenzten Umfang aufnehmen. Daher schreibt der Gesetzgeber folgenden Hinweis vor: „enthält eine Phenylalaninquelle“.
Eine eventuelle Gefährlichkeit von Aspartam ist in den letzten zehn Jahren immer wieder kontrovers diskutiert worden. Zahlreiche weltweite Studien haben die Unbedenklichkeit von Aspartam belegt, italienische Forschungsergebnisse zeigten jedoch ein höheres Tumorrisiko bei Ratten (Hirntumore, Blutkrebs oder Nierenkrebs). Die Ergebnisse werden von vielen Wissenschaftlern angezweifelt. Neue Tierversuche zeigen, dass durch den Konsum die Darmflora und der Glukosestoffwechsel gestört werden könnten.
Widersprüchliche Studienergebnisse zur Förderung von Übergewicht durch Süßstoffe: Einige belegen appetitanregende Wirkung. Weitere unabhängige Forschung ist erforderlich.
Vom Verzehr größerer Mengen ist abzuraten.
Zusatzinformationen
Bei der Herstellung ist der Einsatz gentechnisch veränderter Organismen möglich.
Dieser Zusatzstoff ist gemäß der EG-Öko-Verordnung für die Herstellung von Bio-Lebensmitteln erlaubt.
Nanotechnische Herstellung möglich - Risikopotential wenig erforscht.
Datenquellen
Die Verbraucher Initiative e.V., www.zusatzstoffe-online.de (2024)
Weitere Namen
E330, Zitronensäure
Gruppe
Antioxidationsmittel, Komplexbildner, Säuerungsmittel, Säureregulator, Schmelzsalz
Erläuterung
Als Zwischenprodukt des Energiestoffwechsels (Citronensäurezyklus) ist Citronensäure Bestandteil jeder lebenden Zelle. Der menschliche Stoffwechsel setzt täglich ein Kilogramm davon um. Neben ihrer Funktion als meistgebrauchtes Säuerungsmittel wird Citronensäure in der Lebensmittelindustrie für eine Reihe weiterer technologischer Anwendungen genutzt: Wegen ihrer Fähigkeit, mit Schwermetallen Komplexe zu bilden, erhält sie als Antioxidationsmittel Fette, Farben, Aromen und Vitamingehalt vieler Lebensmittel. Beim Sterilisieren von Sahne und Milch sowie beim Schmelzen von Käse verhindert sie das Gerinnen des Eiweißes. Citronensäure unterstützt die Umrötung von Fleisch (siehe: Kaliumnitrit E 249) und verbessert zudem die Backeigenschaften von Teigen und Mehlen.
Herstellung
Citronensäure wird biotechnologisch mit Hilfe von Mikroorganismen, insbesondere des Schimmelpilzes Aspergillus niger hergestellt. Als Nährmedium dienen Glucose oder Melasse.
Problem
Der zunehmende Einsatz in Getränken und „sauren“ Süßigkeiten führt immer häufiger zu Zahnschäden bei Kindern und Erwachsenen, weil der Zahnschmelz von der Säure angegriffen und hierdurch die Entstehung von Karies gefördert wird, z. B. durch Eistee in Nuckelflaschen für Kleinkinder. Vom Verzehr in größeren Mengen ist abzuraten.
Zusatzinformationen
Bei der Herstellung ist der Einsatz gentechnisch veränderter Organismen möglich.
Dieser Zusatzstoff ist gemäß der EG-Öko-Verordnung für die Herstellung von Bio-Lebensmitteln erlaubt.
Nanotechnische Herstellung möglich - Risikopotential wenig erforscht.
Datenquellen
Die Verbraucher Initiative e.V., www.zusatzstoffe-online.de (2024)
Weitere Namen
E341iii, Calciumorthophosphat
Erläuterung
Calciumphosphate sind Abkömmlinge der Phosphorsäure (E 338). Je nachdem, wie viele Calciumatome im Molekül gebunden sind, werden drei Varianten unterschieden: Monocalciumphosphat, Dicalciumphosphat und Tricalciumphosphat.
Wegen ihrer besonderen chemischen Eigenschaften werden Phosphate in der Lebensmittelindustrie in sehr verschiedenen Funktionen eingesetzt (siehe Natriumphosphat E 339). Pulvrige Calciumphosphate haften zudem sehr gut an Lebensmitteloberflächen und verhindern so das Verkleben, Anbacken und Festwerden. Sie werden daher als Trennmittel verwendet.
Herstellung
Calciumphosphate werden mit Hilfe von Calciumhydroxid aus Phosphorsäure (E 338) hergestellt.
Problem
Vom häufigen Verzehr ist abzuraten.
Zusatzinformationen
Bei der Herstellung ist der Einsatz gentechnisch veränderter Organismen möglich.
Dieser Zusatzstoff ist gemäß der EG-Öko-Verordnung für die Herstellung von Bio-Lebensmitteln erlaubt.
Nanotechnische Herstellung möglich - Risikopotential wenig erforscht.
Datenquellen
Die Verbraucher Initiative e.V., www.zusatzstoffe-online.de (2024)
Weitere Namen
E300, Ascorbinsäure, Vitamin C
Gruppe
Antioxidationsmittel, Mehlbehandlungsmittel, Stabilisator
Erläuterung
Ascorbinsäure ist die chemische Bezeichnung für Vitamin C, das in vielen Obst- und Gemüsesorten sowie in Milch reichlich enthalten ist. Es verhindert die Entstehung freier Radikale, die durch den Einfluss von Luftsauerstoff entstehen können. Ascorbinsäure gehört daher zu den natürlichen Antioxidationsmitteln/Antioxidantien. Im menschlichen Organismus ist Vitamin C unter anderem an Bildung von Kollagen beteiligt, das für den Aufbau von Bindegewebe, Knochen und Knorpel nötig ist. Es stimuliert darüber hinaus das Immunsystem und verbessert die Aufnahme von Eisen aus der Nahrung.
Ascorbinsäure verzögert qualitätsmindernde Einflüsse des Sauerstoffs wie etwa Braunverfärbungen bei angeschnittenem Obst und Gemüse. Sie wird häufig in Kombination mit anderen Antioxidantien eingesetzt. Ascorbinsäure wird häufig zusammen mit Nitritpökelsalz (siehe E 249, E 250) verwendet, weil es die Umrötung der Fleischwaren stabilisiert und zugleich die Bildung von Nitrosaminen hemmt. Ascorbinsäure verbessert darüber hinaus die Klebereigenschaften von (Vollkorn-) Mehlen.
Herstellung
Üblicherweise wird Ascorbinsäure heute in einer mehrstufigen chemischen Reaktion hergestellt (Reichenstein-Prozess).
Problem
Wird aus technologischen Gründen zunehmend in Lebensmitteln verwendet. Es besteht der Verdacht, dass sich Oxalsäure bildet. Bei ständiger Überdosierung, z.B. mehrere Gramm täglich durch Vitaminpräparate, kann das Abbauprodukt Oxalsäure zu Nieren- und Blasensteinbildung führen. In Verbindung mit Nitritpökelsalz wird die unerwünschte Nitrosaminbildung gehemmt. Säuglingsnahrung darf ebenfalls Ascorbinsäure enthalten.
Zusatzinformationen
Bei der Herstellung ist der Einsatz gentechnisch veränderter Organismen möglich.
Dieser Zusatzstoff ist gemäß der EG-Öko-Verordnung für die Herstellung von Bio-Lebensmitteln erlaubt.
Nanotechnische Herstellung möglich - Risikopotential wenig erforscht.
Datenquellen
Die Verbraucher Initiative e.V., www.zusatzstoffe-online.de (2024)
Weitere Namen
E470b, Magnesium-Stearat, Salze von Speisefettsäuren
Gruppe
Trägerstoff, Trennmittel, Überzugsmittel
Erläuterung
Die Magnesiumverbindungen gesättigter Fettsäuren sind als Zwischenprodukte des Fettstoffwechsels auch im menschlichen Organismus zu finden. Das feine Pulver hat sehr gute Hafteigenschaften und wird deshalb vor allem als Trennmittel eingesetzt. Auch als Mahl- und Rieselhilfe für besonders weiche Verbindungen ist es gut geeignet.
Herstellung
Das Magnesiumsalz der Speisefettsäuren kann mit Hilfe chemischer Reaktionen aus pflanzlichen oder tierischen Fetten hergestellt werden. Üblicherweise werden Pflanzenöle wie Soja- aber auch Raps- und Maisöl eingesetzt. Herstellung aus genverändertem Soja möglich.
Zusatzinformationen
Bei der Herstellung ist der Einsatz gentechnisch veränderter Organismen möglich.
Dieser Zusatzstoff ist gemäß der EG-Öko-Verordnung für die Herstellung von Bio-Lebensmitteln erlaubt.
Nanotechnische Herstellung möglich - Risikopotential wenig erforscht.
Datenquellen
Die Verbraucher Initiative e.V., www.zusatzstoffe-online.de (2024)
Weitere Namen
E101, Lactoflavin, Laktoflavin, Vitamin B2
Gruppe
Farbstoff
Erläuterung
Riboflavin ist die chemische Bezeichnung für Vitamin B2. Es spielt in den Zellen eine wesentliche Rolle für die Energiegewinnung aus Kohlenhydraten, Fetten und Eiweiß. Vitamin B2 dient außerdem dem Schutz der Nervenbahnen und der Haut.
Riboflavin ist vor allem in Milch und Milchprodukten, Fleisch, Eiern und Hefe enthalten. Auch grüne Gemüse und Vollkornbrot sind gute Riboflavin-Quellen. Wegen seiner gelben Farbe wird es als Lebensmittelzusatzstoff eingesetzt.
Herstellung
Riboflavin kann aus natürlichen Quellen wie Molke oder Hefe gewonnen werden. Die industrielle Herstellung erfolgt jedoch in erster Linie in einem mehrstufigen chemisch-synthetischen Verfahren aus D-Ribose, Alloxan und 3,4-Dimethylanilin.
Problem
Tierische Herkunft aus Molke möglich, dann Pflicht der Allergenkennzeichnung.
Zusatzinformationen
Bei der Herstellung ist der Einsatz gentechnisch veränderter Organismen möglich.
Dieser Zusatzstoff ist gemäß der EG-Öko-Verordnung für die Herstellung von Bio-Lebensmitteln erlaubt.
Nanotechnische Herstellung möglich - Risikopotential wenig erforscht.
Datenquellen
Die Verbraucher Initiative e.V., www.zusatzstoffe-online.de (2024)
Weitere Namen
E551, Kieselsäure
Gruppe
Füllstoff, Trägerstoff, Trennmittel
Erläuterung
Siliciumdioxid ist das in der Erdkruste am häufigsten vorkommende Mineral. Als Bestandteil der Zellwände zahlreicher Pflanzen ist es auch in Lebensmitteln in unterschiedlichen Mengen enthalten. Der menschliche Organismus kann Siliciumdioxid weder aufnehmen noch verwerten. Es wird unverändert ausgeschieden.
In der Lebensmittelindustrie wird Siliciumdioxid in der Regel in Pulverform eingesetzt. Sind die enthaltenen Siliciumdioxid-Kristalle besonders porös, spricht man auch von Kieselgel. Wegen ihrer enormen inneren Oberfläche können diese Kristalle große Mengen Wasser in ihrem Inneren festhalten. Dies geschieht nur durch physikalische Wechselwirkungen – die Kristalle verändern weder ihre chemische Struktur noch quellen sie dabei auf.
In pulverförmigen Lebensmitteln lagern sich die Siliciumdioxidkristalle an die Partikel des Lebensmittels an und schirmen sie so gegen ihre Umgebung ab. Auf diese Weise verhindert Siliciumdioxid, dass die Lebensmittel verklumpen: Pulvrige Produkte bleiben rieselfähig, andere lassen sich gut trennen.
Herstellung
Siliciumdioxid wird aus natürlich vorkommendem Quarzsand gewonnen. Das entstehende Pulver wird als amorph bezeichnet, es enthält Partikel unterschiedlicher Größe.
Zusatzinformationen
Bei der Herstellung ist der Einsatz gentechnisch veränderter Organismen möglich.
Dieser Zusatzstoff ist gemäß der EG-Öko-Verordnung für die Herstellung von Bio-Lebensmitteln erlaubt.
Nanotechnische Herstellung möglich - Risikopotential wenig erforscht.
Datenquellen
Die Verbraucher Initiative e.V., www.zusatzstoffe-online.de (2024)
Weitere Namen
E950, Acesulfam
Gruppe
Geschmacksverstärker, Süßstoff
Erläuterung
Die weißen Acesulfam-K Kristalle sind von intensiv süßem Geschmack, der auch beim Kochen und Backen stabil bleibt. Acesulfam-K ist etwa 200 mal süßer als Haushaltszucker (Saccharose), wird aber vom Körper nicht verstoffwechselt, sondern unverändert ausgeschieden. In der Lebensmittelindustrie wird Acesulfam-K vor allem in zuckerreduzierten Lebensmitteln einzeln oder in Kombination mit Aspartam (E 951) bzw. anderen Süßstoffen eingesetzt. Er ist zudem als Tafelsüße im Handel. In zuckerhaltigen Kaugummis wird Acesulfam-K darüber hinaus als Geschmacksverstärker eingesetzt.
Herstellung
Acesulfam-K wird durch chemische Reaktion aus Abkömmlingen der Acetessigsäure gewonnen.
Problem
Widersprüchliche Studienergebnisse zur Förderung von Übergewicht durch Süßstoffe: einige belegen appetitanregende Wirkung, die meisten stützen diese Ergebnisse nicht. Weitere unabhängige Forschung ist erforderlich.
Acesulfam-K wird vom Körper nicht verstoffwechselt, sondern unverändert ausgeschieden. In vergleichsweise hoher Konzentration im Abwasser nachweisbar, da es kaum entfernt werden kann.
Vom Verzehr größerer Mengen ist abzuraten.
Zusatzinformationen
Bei der Herstellung ist der Einsatz gentechnisch veränderter Organismen möglich.
Dieser Zusatzstoff ist gemäß der EG-Öko-Verordnung für die Herstellung von Bio-Lebensmitteln erlaubt.
Nanotechnische Herstellung möglich - Risikopotential wenig erforscht.
Datenquellen
Die Verbraucher Initiative e.V., www.zusatzstoffe-online.de (2024)
Weitere Namen
E951
Gruppe
Geschmacksverstärker, Süßstoff
Erläuterung
Aspartam besteht aus den beiden Eiweißbausteinen (Aminosäuren) Asparaginsäure und Phenylalanin. Die weißen Kristalle schmecken etwa 200-mal süßer als Haushaltszucker (Saccharose), verlieren ihre Süßkraft jedoch bei großer Hitze und in Gegenwart von Säuren. Aspartam ist daher nicht zum Kochen und Backen geeignet. Im menschlichen Organismus wird Aspartam in seine Bestandteile aufgespalten und verwertet. Daher liefert der Stoff rechnerisch wie jedes Eiweiß Energie (4 kcal/g). Da Aspartam jedoch wegen seiner starken Süßkraft nur in sehr geringen Mengen eingesetzt wird, leistet es keinen nennenswerten Beitrag zur Gesamtenergieversorgung.
In der Lebensmittelindustrie wird der Süßstoff vor allem in zuckerreduzierten Lebensmitteln einzeln oder in Kombination mit anderen Süßstoffen eingesetzt. Er ist zudem als Tafelsüße im Handel. In zuckerhaltigen Kaugummis wird Aspartam, das eine verstärkende Wirkung auf Zitrus- und Fruchtaromen hat, als Geschmacksverstärker eingesetzt.
Herstellung
Aspartam wird durch chemische Reaktion aus Asparaginsäure, Phenylalanin und Methanol hergestellt. Bei der Herstellung ist der Einsatz gentechnisch veränderter Organismen möglich.
Problem
Die duldbare tägliche Aufnahmemenge beträgt 40mg pro kg Körpergewicht. Menschen, die unter der seltenen Krankheit Phenylketonurie leiden, dürfen das im Aspartam enthaltene Phenylanalin nur im begrenzten Umfang aufnehmen. Daher schreibt der Gesetzgeber folgenden Hinweis vor: „enthält eine Phenylalaninquelle“.
Eine eventuelle Gefährlichkeit von Aspartam ist in den letzten zehn Jahren immer wieder kontrovers diskutiert worden. Zahlreiche weltweite Studien haben die Unbedenklichkeit von Aspartam belegt, italienische Forschungsergebnisse zeigten jedoch ein höheres Tumorrisiko bei Ratten (Hirntumore, Blutkrebs oder Nierenkrebs). Die Ergebnisse werden von vielen Wissenschaftlern angezweifelt. Neue Tierversuche zeigen, dass durch den Konsum die Darmflora und der Glukosestoffwechsel gestört werden könnten.
Widersprüchliche Studienergebnisse zur Förderung von Übergewicht durch Süßstoffe: Einige belegen appetitanregende Wirkung. Weitere unabhängige Forschung ist erforderlich.
Vom Verzehr größerer Mengen ist abzuraten.
Zusatzinformationen
Bei der Herstellung ist der Einsatz gentechnisch veränderter Organismen möglich.
Dieser Zusatzstoff ist gemäß der EG-Öko-Verordnung für die Herstellung von Bio-Lebensmitteln erlaubt.
Nanotechnische Herstellung möglich - Risikopotential wenig erforscht.
Datenquellen
Die Verbraucher Initiative e.V., www.zusatzstoffe-online.de (2024)
Weitere Namen
E330, Zitronensäure
Gruppe
Antioxidationsmittel, Komplexbildner, Säuerungsmittel, Säureregulator, Schmelzsalz
Erläuterung
Als Zwischenprodukt des Energiestoffwechsels (Citronensäurezyklus) ist Citronensäure Bestandteil jeder lebenden Zelle. Der menschliche Stoffwechsel setzt täglich ein Kilogramm davon um. Neben ihrer Funktion als meistgebrauchtes Säuerungsmittel wird Citronensäure in der Lebensmittelindustrie für eine Reihe weiterer technologischer Anwendungen genutzt: Wegen ihrer Fähigkeit, mit Schwermetallen Komplexe zu bilden, erhält sie als Antioxidationsmittel Fette, Farben, Aromen und Vitamingehalt vieler Lebensmittel. Beim Sterilisieren von Sahne und Milch sowie beim Schmelzen von Käse verhindert sie das Gerinnen des Eiweißes. Citronensäure unterstützt die Umrötung von Fleisch (siehe: Kaliumnitrit E 249) und verbessert zudem die Backeigenschaften von Teigen und Mehlen.
Herstellung
Citronensäure wird biotechnologisch mit Hilfe von Mikroorganismen, insbesondere des Schimmelpilzes Aspergillus niger hergestellt. Als Nährmedium dienen Glucose oder Melasse.
Problem
Der zunehmende Einsatz in Getränken und „sauren“ Süßigkeiten führt immer häufiger zu Zahnschäden bei Kindern und Erwachsenen, weil der Zahnschmelz von der Säure angegriffen und hierdurch die Entstehung von Karies gefördert wird, z. B. durch Eistee in Nuckelflaschen für Kleinkinder. Vom Verzehr in größeren Mengen ist abzuraten.
Zusatzinformationen
Bei der Herstellung ist der Einsatz gentechnisch veränderter Organismen möglich.
Dieser Zusatzstoff ist gemäß der EG-Öko-Verordnung für die Herstellung von Bio-Lebensmitteln erlaubt.
Nanotechnische Herstellung möglich - Risikopotential wenig erforscht.
Datenquellen
Die Verbraucher Initiative e.V., www.zusatzstoffe-online.de (2024)
Weitere Namen
E341iii, Calciumorthophosphat
Erläuterung
Calciumphosphate sind Abkömmlinge der Phosphorsäure (E 338). Je nachdem, wie viele Calciumatome im Molekül gebunden sind, werden drei Varianten unterschieden: Monocalciumphosphat, Dicalciumphosphat und Tricalciumphosphat.
Wegen ihrer besonderen chemischen Eigenschaften werden Phosphate in der Lebensmittelindustrie in sehr verschiedenen Funktionen eingesetzt (siehe Natriumphosphat E 339). Pulvrige Calciumphosphate haften zudem sehr gut an Lebensmitteloberflächen und verhindern so das Verkleben, Anbacken und Festwerden. Sie werden daher als Trennmittel verwendet.
Herstellung
Calciumphosphate werden mit Hilfe von Calciumhydroxid aus Phosphorsäure (E 338) hergestellt.
Problem
Vom häufigen Verzehr ist abzuraten.
Zusatzinformationen
Bei der Herstellung ist der Einsatz gentechnisch veränderter Organismen möglich.
Dieser Zusatzstoff ist gemäß der EG-Öko-Verordnung für die Herstellung von Bio-Lebensmitteln erlaubt.
Nanotechnische Herstellung möglich - Risikopotential wenig erforscht.
Datenquellen
Die Verbraucher Initiative e.V., www.zusatzstoffe-online.de (2024)
Weitere Namen
E300, Ascorbinsäure, Vitamin C
Gruppe
Antioxidationsmittel, Mehlbehandlungsmittel, Stabilisator
Erläuterung
Ascorbinsäure ist die chemische Bezeichnung für Vitamin C, das in vielen Obst- und Gemüsesorten sowie in Milch reichlich enthalten ist. Es verhindert die Entstehung freier Radikale, die durch den Einfluss von Luftsauerstoff entstehen können. Ascorbinsäure gehört daher zu den natürlichen Antioxidationsmitteln/Antioxidantien. Im menschlichen Organismus ist Vitamin C unter anderem an Bildung von Kollagen beteiligt, das für den Aufbau von Bindegewebe, Knochen und Knorpel nötig ist. Es stimuliert darüber hinaus das Immunsystem und verbessert die Aufnahme von Eisen aus der Nahrung.
Ascorbinsäure verzögert qualitätsmindernde Einflüsse des Sauerstoffs wie etwa Braunverfärbungen bei angeschnittenem Obst und Gemüse. Sie wird häufig in Kombination mit anderen Antioxidantien eingesetzt. Ascorbinsäure wird häufig zusammen mit Nitritpökelsalz (siehe E 249, E 250) verwendet, weil es die Umrötung der Fleischwaren stabilisiert und zugleich die Bildung von Nitrosaminen hemmt. Ascorbinsäure verbessert darüber hinaus die Klebereigenschaften von (Vollkorn-) Mehlen.
Herstellung
Üblicherweise wird Ascorbinsäure heute in einer mehrstufigen chemischen Reaktion hergestellt (Reichenstein-Prozess).
Problem
Wird aus technologischen Gründen zunehmend in Lebensmitteln verwendet. Es besteht der Verdacht, dass sich Oxalsäure bildet. Bei ständiger Überdosierung, z.B. mehrere Gramm täglich durch Vitaminpräparate, kann das Abbauprodukt Oxalsäure zu Nieren- und Blasensteinbildung führen. In Verbindung mit Nitritpökelsalz wird die unerwünschte Nitrosaminbildung gehemmt. Säuglingsnahrung darf ebenfalls Ascorbinsäure enthalten.
Zusatzinformationen
Bei der Herstellung ist der Einsatz gentechnisch veränderter Organismen möglich.
Dieser Zusatzstoff ist gemäß der EG-Öko-Verordnung für die Herstellung von Bio-Lebensmitteln erlaubt.
Nanotechnische Herstellung möglich - Risikopotential wenig erforscht.
Datenquellen
Die Verbraucher Initiative e.V., www.zusatzstoffe-online.de (2024)
Weitere Namen
E470b, Magnesium-Stearat, Salze von Speisefettsäuren
Gruppe
Trägerstoff, Trennmittel, Überzugsmittel
Erläuterung
Die Magnesiumverbindungen gesättigter Fettsäuren sind als Zwischenprodukte des Fettstoffwechsels auch im menschlichen Organismus zu finden. Das feine Pulver hat sehr gute Hafteigenschaften und wird deshalb vor allem als Trennmittel eingesetzt. Auch als Mahl- und Rieselhilfe für besonders weiche Verbindungen ist es gut geeignet.
Herstellung
Das Magnesiumsalz der Speisefettsäuren kann mit Hilfe chemischer Reaktionen aus pflanzlichen oder tierischen Fetten hergestellt werden. Üblicherweise werden Pflanzenöle wie Soja- aber auch Raps- und Maisöl eingesetzt. Herstellung aus genverändertem Soja möglich.
Zusatzinformationen
Bei der Herstellung ist der Einsatz gentechnisch veränderter Organismen möglich.
Dieser Zusatzstoff ist gemäß der EG-Öko-Verordnung für die Herstellung von Bio-Lebensmitteln erlaubt.
Nanotechnische Herstellung möglich - Risikopotential wenig erforscht.
Datenquellen
Die Verbraucher Initiative e.V., www.zusatzstoffe-online.de (2024)
Weitere Namen
E101, Lactoflavin, Laktoflavin, Vitamin B2
Gruppe
Farbstoff
Erläuterung
Riboflavin ist die chemische Bezeichnung für Vitamin B2. Es spielt in den Zellen eine wesentliche Rolle für die Energiegewinnung aus Kohlenhydraten, Fetten und Eiweiß. Vitamin B2 dient außerdem dem Schutz der Nervenbahnen und der Haut.
Riboflavin ist vor allem in Milch und Milchprodukten, Fleisch, Eiern und Hefe enthalten. Auch grüne Gemüse und Vollkornbrot sind gute Riboflavin-Quellen. Wegen seiner gelben Farbe wird es als Lebensmittelzusatzstoff eingesetzt.
Herstellung
Riboflavin kann aus natürlichen Quellen wie Molke oder Hefe gewonnen werden. Die industrielle Herstellung erfolgt jedoch in erster Linie in einem mehrstufigen chemisch-synthetischen Verfahren aus D-Ribose, Alloxan und 3,4-Dimethylanilin.
Problem
Tierische Herkunft aus Molke möglich, dann Pflicht der Allergenkennzeichnung.
Zusatzinformationen
Bei der Herstellung ist der Einsatz gentechnisch veränderter Organismen möglich.
Dieser Zusatzstoff ist gemäß der EG-Öko-Verordnung für die Herstellung von Bio-Lebensmitteln erlaubt.
Nanotechnische Herstellung möglich - Risikopotential wenig erforscht.
Datenquellen
Die Verbraucher Initiative e.V., www.zusatzstoffe-online.de (2024)
Weitere Namen
E551, Kieselsäure
Gruppe
Füllstoff, Trägerstoff, Trennmittel
Erläuterung
Siliciumdioxid ist das in der Erdkruste am häufigsten vorkommende Mineral. Als Bestandteil der Zellwände zahlreicher Pflanzen ist es auch in Lebensmitteln in unterschiedlichen Mengen enthalten. Der menschliche Organismus kann Siliciumdioxid weder aufnehmen noch verwerten. Es wird unverändert ausgeschieden.
In der Lebensmittelindustrie wird Siliciumdioxid in der Regel in Pulverform eingesetzt. Sind die enthaltenen Siliciumdioxid-Kristalle besonders porös, spricht man auch von Kieselgel. Wegen ihrer enormen inneren Oberfläche können diese Kristalle große Mengen Wasser in ihrem Inneren festhalten. Dies geschieht nur durch physikalische Wechselwirkungen – die Kristalle verändern weder ihre chemische Struktur noch quellen sie dabei auf.
In pulverförmigen Lebensmitteln lagern sich die Siliciumdioxidkristalle an die Partikel des Lebensmittels an und schirmen sie so gegen ihre Umgebung ab. Auf diese Weise verhindert Siliciumdioxid, dass die Lebensmittel verklumpen: Pulvrige Produkte bleiben rieselfähig, andere lassen sich gut trennen.
Herstellung
Siliciumdioxid wird aus natürlich vorkommendem Quarzsand gewonnen. Das entstehende Pulver wird als amorph bezeichnet, es enthält Partikel unterschiedlicher Größe.
Zusatzinformationen
Bei der Herstellung ist der Einsatz gentechnisch veränderter Organismen möglich.
Dieser Zusatzstoff ist gemäß der EG-Öko-Verordnung für die Herstellung von Bio-Lebensmitteln erlaubt.
Nanotechnische Herstellung möglich - Risikopotential wenig erforscht.
Datenquellen
Die Verbraucher Initiative e.V., www.zusatzstoffe-online.de (2024)
Persönliche Bewertung
Dieses Produkt ist für mich geeignet
Klima Score
Nicht Verfügbar
Wann ist der Klima Score verfügbar?
Dieser Klima Score ist leider gerade nicht verfügbar, da er noch berechnet oder gerade aktualisiert wird. Aber wir sind dran!
Wenn das Produkt für Dich wichtig ist, dann stimme mit ab. Die Produkte mit den meisten Stimmen werden als nächstes berechnet. So kannst Du uns helfen, den Klima Score immer weiter zu verbessern.
Warum braucht der Klima Score Deine Unterstützung?
In vielen Ländern sind sogenannte Lebensmittelampeln bereits Pflicht. Sie geben Auskunft über den Gehalt an Zucker, Fett oder Nährstoffen in einem Produkt.Wir von CodeCheck wünschen uns, dass dies auch für die Menge an CO2e-Emissionen gilt, die ein Produkt während seines Lebenszyklus verursacht.Dies würde uns allen ermöglichen, die Klimaauswirkungen von Lebensmitteln direkt im Supermarkt zu sehen, sie zu vergleichen und klimafreundliche Optionen wählen zu können.Es kann noch Jahre dauern, bis es eine gesetzliche Verpflichtung gibt, diese Informationen auf der Packung zu zeigen.
Aber wir wollen nicht warten und nehmen die Sache selbst in die Hand.
Und was machen CodeCheck und Eaternity?
CodeCheck und Eaternity arbeiten zusammen, um einen Klima Score für Lebensmittel anzeigen zu können. Da das eine Menge Arbeit ist, können wir den Klima-Score bisher nur für eine begrenzte Anzahl von Produkten bereitstellen. Aber Du kannst uns helfen. Stimme für die Lebensmittel, die Du am meisten konsumierst und hilf uns den Klima Score immer besser und relevanter zu machen.
Du kannst darüber hinaus auch mit Lebensmittelherstellern in Kontakt treten und sie bitten, ihre Produktinformationen auf CodeCheck zu aktualisieren oder die CO2e-Informationen mit Eaternity zu verifizieren.